

- [1] The transistor parameters for the circuit in Figure 1 are $\beta = 180$ and $V_A = \infty$.
 - (a) Find I_{CQ} and V_{CEQ} .
 - (b) Calculate the small-signal voltage gain.
 - (c) Determine the input and output resistances R_{ib} and R_{o} .

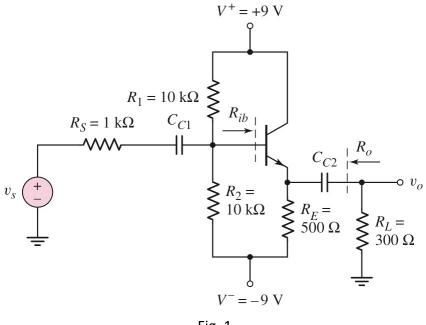
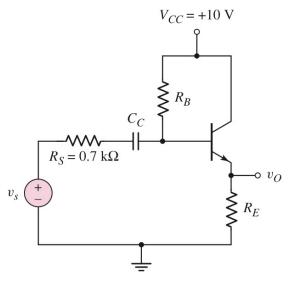


Fig. 1

[2] For the transistor in Figure 2, the parameters are $\beta = 100$ and $V_A = \infty$.


(a) Design the circuit such that $I_{EQ} = 1$ mA and the Q-point is in the center of the dc load line.

(b) If the peak-to-peak sinusoidal output voltage is 4 V, determine the peak-to-peak sinusoidal signals at the base of the transistor and the peak-to-peak value of vs.

(c) If the load resistor $R_L = 1 \ k\Omega$ is connected to the output through a coupling capacitor, determine the peak-to-peak value in the output voltage, assuming vs is equal to the value determined in part (b).

Solid State Electronic Devices 3rd Term – Level 1 / Credit H Sheet 06 - (Fall 2017)

[3] An emitter-follower amplifier, with the configuration shown in Figure 3, is to be designed such that an audio signal given by $v_s = 5 \sin(3000t)$ V but with a source resistance of $R_s = 10 \Omega$ can drive a small speaker. Assume the supply voltages are V_+ = + 12 V and $V_- = -12$ V and $\beta = 50$. The load, representing the speaker, is $R_L = 12 \Omega$. The amplifier should be capable of delivering approximately 1 W of average power to the load. What is the signal power gain of your amplifier?

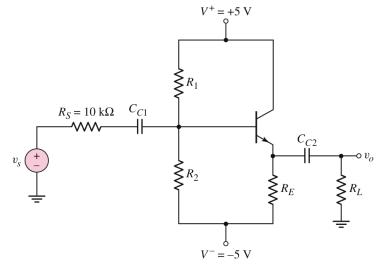


Fig. 3